Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing.

نویسندگان

  • C von Cube
  • S Slama
  • D Kruse
  • C Zimmermann
  • Ph W Courteille
  • G R M Robb
  • N Piovella
  • R Bonifacio
چکیده

Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective atomic recoil laser as a synchronization transition.

We consider here a model previously introduced to describe the collective behavior of an ensemble of cold atoms interacting with a coherent electromagnetic field. The atomic motion along the self-generated spatially periodic force field can be interpreted as the rotation of a phase oscillator. This suggests a relationship with synchronization transitions occurring in globally coupled rotators. ...

متن کامل

Superradiant rayleigh scattering and collective atomic recoil lasing in a ring cavity.

Collective interaction of light with an atomic gas can give rise to superradiant instabilities. We experimentally study the sudden buildup of a reverse light field in a laser-driven high-finesse ring cavity filled with ultracold thermal or Bose-Einstein condensed atoms. While superradiant Rayleigh scattering from atomic clouds is normally observed only at very low temperatures (i.e., well below...

متن کامل

Propagation effects in the quantum description of collective recoil lasing

The free electron laser and collective atomic recoil laser (CARL) are examples of collective recoil lasing, where exponential amplification of a radiation field occurs simultaneously with self-bunching of an ensemble of particles (electrons in the case of the FEL and atoms in the case of the CARL). In this paper, we discuss quantum and propagation effects using a model where the particle dynami...

متن کامل

Theory of a collective atomic recoil laser

We perform a study of a collective atomic recoil laser ~CARL! that goes beyond the initial growth period. The study is based on a theory that treats both internal and external degrees of atomic freedom quantum mechanically but regards the laser light as a classical field obeying Maxwell’s equations. We introduce the concepts of momentum families and diffraction groups and organize the matter wa...

متن کامل

Observation of lasing mediated by collective atomic recoil.

We observe the buildup of a frequency-shifted reverse light field in a unidirectionally pumped high-Q optical ring cavity serving as a dipole trap for cold atoms. This effect is enhanced and a steady state is reached, if via an optical molasses an additional friction force is applied to the atoms. We observe the displacement of the atoms accelerated by momentum transfer in the backscattering pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 93 8  شماره 

صفحات  -

تاریخ انتشار 2004